Effect Of Web Reinforcement On Ultimate Strength Of Reinforced Concrete Deep Beam
نویسندگان
چکیده
It is observed that, reinforced concrete beams failed due to flexure but in case of deep beam failure occur due to shear. Deep beams may be defined as the beam where shear span to depth ratio less than 2. A number of researchers already proposed various approach to predict the ultimate strength of deep beams. In this study a newer approach is developed to calculate the ultimate shear strength of deep beams based on strut and tie model. Deep beams of different web reinforcement are used to predict the shear strength. A new effectiveness coefficient has been introduced to understand the contribution of steel during failure of deep beam under
منابع مشابه
Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...
متن کاملStrut-and-Tie Method for Prediction of Ultimate Shear Capacity of Shear-Strengthened RC deep beams with FRP
The main objective of this study is to propose the Strut-and-Tie method (STM) to predict the shear capacity of simply supported RC deep beams shear-strengthened with carbon fiber reinforced polymers (CFRP). It is assumed that, the total carried shear force by shear-strengthened RC deep beam provided by three independent resistance, namely diagonal concrete strut due to Strut-and-tie mechanism, ...
متن کاملAdaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
Article history: Received: 27 June 2015 Accepted: 25 August 2015 A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship w...
متن کاملNumerical Study on the Flexural Behaviour of Concrete Beams Reinforced by GFRP Bars
Enhancement of the response of reinforced concrete (RC) beams using fiber-reinforced polymer (FRP) reinforcement bars has become a popular structural technique over the past two decades due to the well-known advantages of FRP composites including their high strength-to-weight ratio and excellent corrosion resistance. Thisstudy presents n...
متن کاملShear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings
Results of an experimental investigation on the behavior and ultimate shear capacity of 27 reinforced concrete Transfer (deep) beams are summarized. The main variables were percent longitudinal (tension) steel (0.28 to 0.60%), percent horizontal web steel (0.60 to 2.40%), percent vertical steel (0.50 to 2.25%), percent orthogonal web steel, shear span-to-depth ratio (1.10 to 3.20) and cube conc...
متن کامل